
Superposition of Two Perpendicular Simple Harmonic
Vibrations

(1) Vibrations Having Equal Frequencies

Suppose that a particle moves under the simultaneous influence of two simple harmonic

vibrations of equal frequency, one along the x axis, the other along the perpendicular y axis.

What is its subsequent motion?

This displacements may be written

x ¼ a1 sin ð!t þ �1Þ
y ¼ a2 sin ð!t þ �2Þ

and the path followed by the particle is formed by eliminating the time t from these

equations to leave an expression involving only x and y and the constants �1 and �2.

Expanding the arguments of the sines we have

x

a1

¼ sin!t cos�1 þ cos!t sin�1

and

y

a2

¼ sin!t cos�2 þ cos!t sin�2

If we carry out the process

x

a1

sin�2 � y

a2

sin�1

� �2

þ y

a2

cos�1 � x

a1

cos�2

� �2

this will yield

x2

a2
1

þ y2

a2
2

� 2xy

a1a2

cos ð�2 � �1Þ ¼ sin2ð�2 � �1Þ ð1:3Þ

which is the general equation for an ellipse.

In the most general case the axes of the ellipse are inclined to the x and y axes, but these

become the principal axes when the phase difference

�2 � �1 ¼ �

2

Equation (1.3) then takes the familiar form

x2

a2
1

þ y2

a2
2

¼ 1

that is, an ellipse with semi-axes a1 and a2.
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If a1 ¼ a2 ¼ a this becomes the circle

x2 þ y2 ¼ a2

When

�2 � �1 ¼ 0; 2�; 4�; etc:

the equation simplifies to

y ¼ a2

a1

x

which is a straight line through the origin of slope a2=a1.

Again for �2 � �1 ¼ �, 3�, 5�, etc., we obtain

y ¼ � a2

a1

x

a straight line through the origin of equal but opposite slope.

The paths traced out by the particle for various values of � ¼ �2 � �1 are shown in

Figure 1.8 and are most easily demonstrated on a cathode ray oscilloscope.

When

�2 � �1 ¼ 0; �; 2�; etc:

and the ellipse degenerates into a straight line, the resulting vibration lies wholly in one

plane and the oscillations are said to be plane polarized.
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Figure 1.8 Paths traced by a system vibrating simultaneously in two perpendicular directions with
simple harmonic motions of equal frequency. The phase angle � is the angle by which the y motion
leads the x motion
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Convention defines the plane of polarization as that plane perpendicular to the plane

containing the vibrations. Similarly the other values of

�2 � �1

yield circular or elliptic polarization where the tip of the vector resultant traces out the

appropriate conic section.

(Problems 1.14, 1.15, 1.16)

�Polarization
Polarization is a fundamental topic in optics and arises from the superposition of two

perpendicular simple harmonic optical vibrations. We shall see in Chapter 8 that when a

light wave is plane polarized its electrical field oscillation lies within a single plane and

traces a sinusoidal curve along the direction of wave motion. Substances such as quartz and

calcite are capable of splitting light into two waves whose planes of polarization are

perpendicular to each other. Except in a specified direction, known as the optic axis, these

waves have different velocities. One wave, the ordinary or O wave, travels at the same

velocity in all directions and its electric field vibrations are always perpendicular to the

optic axis. The extraordinary or E wave has a velocity which is direction-dependent. Both

ordinary and extraordinary light have their own refractive indices, and thus quartz and

calcite are known as doubly refracting materials. When the ordinary light is faster, as in

quartz, a crystal of the substance is defined as positive, but in calcite the extraordinary light

is faster and its crystal is negative. The surfaces, spheres and ellipsoids, which are the loci

of the values of the wave velocities in any direction are shown in Figure 1.9(a), and for a

Optic axis

O vibration

E vibration

x
y

x
E ellipsoid

O sphere

z

y

O sphere

E ellipsoid

Optic axis

z

Quartz (+ve)Calcite (−ve)

Figure 1.9a Ordinary (spherical) and extraordinary (elliposoidal) wave surfaces in doubly refracting
calcite and quartz. In calcite the E wave is faster than the O wave, except along the optic axis. In
quartz the O wave is faster. The O vibrations are always perpendicular to the optic axis, and the O and
E vibrations are always tangential to their wave surfaces

�This section may be omitted at a first reading.
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given direction the electric field vibrations of the separate waves are tangential to the

surface of the sphere or ellipsoid as shown. Figure 1.9(b) shows plane polarized light

normally incident on a calcite crystal cut parallel to its optic axis. Within the crystal the

faster E wave has vibrations parallel to the optic axis, while the O wave vibrations are

perpendicular to the plane of the paper. The velocity difference results in a phase gain of

the E vibration over the O vibration which increases with the thickness of the crystal.

Figure 1.9(c) shows plane polarized light normally incident on the crystal of Figure 1.9(b)

with its vibration at an angle of 45� of the optic axis. The crystal splits the vibration into

Plane polarized
light normally
incident

O vibration
    to plane of paper

E vibration Optic
axis

Calcite
crystal

Figure 1.9b Plane polarized light normally incident on a calcite crystal face cut parallel to its optic
axis. The advance of the E wave over the O wave is equivalent to a gain in phase

E
O

45°

E vibration 90°
ahead in phase
of O vibration

O

E (Optic axis)

Calcite
crystal

Optic axis

Phase difference
causes rotation of
resulting electric
field vector

Sinusoidal
vibration of
electric field

Figure 1.9c The crystal of Fig. 1.9c is thick enough to produce a phase gain of �=2 rad in the
E wave over the O wave. Wave recombination on leaving the crystal produces circularly polarized
light
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equal E and O components, and for a given thickness the E wave emerges with a phase gain

of 90� over the O component. Recombination of the two vibrations produces circularly

polarized light, of which the electric field vector now traces a helix in the anticlockwise

direction as shown.

(2) Vibrations Having Different Frequencies (Lissajous Figures)

When the frequencies of the two perpendicular simple harmonic vibrations are not equal

the resulting motion becomes more complicated. The patterns which are traced are called

Lissajous figures and examples of these are shown in Figure 1.10 where the axial

frequencies bear the simple ratios shown and

� ¼ �2 � �1 ¼ 0 (on the left)

¼ �

2
(on the right)

If the amplitudes of the vibrations are respectively a and b the resulting Lissajous figure

will always be contained within the rectangle of sides 2a and 2b. The sides of the rectangle

will be tangential to the curve at a number of points and the ratio of the numbers of these

tangential points along the x axis to those along the y axis is the inverse of the ratio of the

corresponding frequencies (as indicated in Figure 1.10).
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Figure 1.10 Simple Lissajous figures produced by perpendicular simple harmonic motions of
different angular frequencies
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SuperpositionofaLargeNumbernofSimpleHarmonicVibrations
of Equal Amplitude a and Equal Successive Phase Difference d

Figure 1.11 shows the addition of n vectors of equal length a, each representing a simple

harmonic vibration with a constant phase difference � from its neighbour. Two general

physical situations are characterized by such a superposition. The first is met in Chapter 5

as a wave group problem where the phase difference � arises from a small frequency

difference, �!, between consecutive components. The second appears in Chapter 12 where

the intensity of optical interference and diffraction patterns are considered. There, the

superposed harmonic vibrations will have the same frequency but each component will have

a constant phase difference from its neighbour because of the extra distance it has travelled.

The figure displays the mathematical expression

R cos ð!t þ �Þ ¼ a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ
þ � � � þ a cos ð!t þ ½n� 1��Þ
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Figure 1.11 Vector superposition of a large number n of simple harmonic vibrations of equal
amplitude a and equal successive phase difference �. The amplitude of the resultant

R ¼ 2r sin
n�

2
¼ a

sin n�=2

sin �=2

and its phase with respect to the first contribution is given by

� ¼ ðn� 1Þ�=2
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where R is the magnitude of the resultant and � is its phase difference with respect to the

first component a cos!t.
Geometrically we see that each length

a ¼ 2r sin
�

2

where r is the radius of the circle enclosing the (incomplete) polygon.

From the isosceles triangle OAC the magnitude of the resultant

R ¼ 2r sin
n�

2
¼ a

sin n�=2

sin �=2

and its phase angle is seen to be

� ¼ OÂAB� OÂAC

In the isosceles triangle OAC

ÔOAC ¼ 90� � n�

2

and in the isosceles triangle OAB

OÂAB ¼ 90� � �

2

so

� ¼ 90� � �

2

� �
� 90� � n�

2

� �
¼ ðn� 1Þ �

2

that is, half the phase difference between the first and the last contributions. Hence the

resultant

R cos ð!t þ �Þ ¼ a
sin n�=2

sin �=2
cos !t þ ðn� 1Þ �

2

� �

We shall obtain the same result later in this chapter as an example on the use of exponential

notation.

For the moment let us examine the behaviour of the magnitude of the resultant

R ¼ a
sin n�=2

sin �=2

which is not constant but depends on the value of �. When n is very large � is very small

and the polygon becomes an arc of the circle centre O, of length na ¼ A, with R as the

chord. Then

� ¼ ðn� 1Þ �
2
� n�

2
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and

sin
�

2
! �

2
� �

n

Hence, in this limit,

R ¼ a
sin n�=2

sin �=2
¼ a

sin�

�=n
¼ na

sin�

�
¼ A sin�

�

The behaviour of A sin�=� versus � is shown in Figure 1.12. The pattern is symmetric

about the value � ¼ 0 and is zero whenever sin � ¼ 0 except at � ! 0 that is, when sin

�=� ! 1. When � ¼ 0, � ¼ 0 and the resultant of the n vectors is the straight line of length

A, Figure 1.12(b). As � increases A becomes the arc of a circle until at � ¼ �=2 the first and
last contributions are out of phase ð2� ¼ �Þ and the arc A has become a semicircle of

which the diameter is the resultant R Figure 1.12(c). A further increase in � increases � and

curls the constant length A into the circumference of a circle (� ¼ �) with a zero resultant,

Figure 1.12(d). At � ¼ 3�=2, Figure 1.12(e) the length A is now 3/2 times the

circumference of a circle whose diameter is the amplitude of the first minimum.

�Superposition of n Equal SHM Vectors of Length a with
Random Phase

When the phase difference between the successive vectors of the last section may take

random values � between zero and 2� (measured from the x axis) the vector superposition

and resultant R may be represented by Figure 1.13.
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Figure 1.12 (a) Graph of A sin �=� versus �, showing the magnitude of the resultants for (b)
� ¼ 0; (c) � ¼ �/2; (d) � ¼ � and (e) � ¼ 3�/2

�This section may be omitted at a first reading.
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The components of R on the x and y axes are given by

Rx ¼ a cos�1 þ a cos�2 þ a cos�3 . . . a cos�n

¼ a
Xn
i¼1

cos� i

and

Ry ¼ a
Xn
i¼1

sin� i

where

R2 ¼ R2
x þ R2

y

Now

R2
x ¼ a2

Xn
i¼1

cos� i

 !2

¼ a2
Xn
i¼1

cos2 � i þ
Xn
i¼1
i 6¼j

cos� i

Xn
j¼1

cos� j

2
4

3
5

In the typical term 2 cos � i cos � j of the double summation, cos � i and cos � j have random

values between � 1 and the averaged sum of sets of these products is effectively zero.

The summation

Xn
i¼1

cos2 � i ¼ n cos2 �

R

x

y

Figure 1.13 The resultant R ¼ ffiffiffi
n

p
a of n vectors, each of length a, having random phase. This result

is important in optical incoherence and in energy loss from waves from random dissipation processes
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that is, the number of terms n times the average value cos2 � which is the integrated value

of cos2 � over the interval zero to 2� divided by the total interval 2�, or

cos2 � ¼ 1

2�

ð 2�
0

cos2 � d� ¼ 1

2
¼ sin2 �

So

R2
x ¼ a2

Xn
i¼1

cos2 � i ¼ na2cos2 � i ¼ na2

2

and

R2
y ¼ a2

Xn
i¼1

sin2 � i ¼ na2sin2 � i ¼ na2

2

giving

R2 ¼ R2
x þ R2

y ¼ na2

or

R ¼ ffiffiffi
n

p
a

Thus, the amplitude R of a system subjected to n equal simple harmonic motions of

amplitude a with random phases in only
ffiffiffi
n

p
a whereas, if the motions were all in phase R

would equal na.

Such a result illustrates a very important principle of random behaviour.

(Problem 1.17)

Applications

Incoherent Sources in Optics The result above is directly applicable to the problem of

coherence in optics. Light sources which are in phase are said to be coherent and this

condition is essential for producing optical interference effects experimentally. If the

amplitude of a light source is given by the quantity a its intensity is proportional to a2, n

coherent sources have a resulting amplitude na and a total intensity n2a2. Incoherent

sources have random phases, n such sources each of amplitude a have a resulting amplitudeffiffiffi
n

p
a and a total intensity of na2.

Random Processes and Energy Absorption From our present point of view the

importance of random behaviour is the contribution it makes to energy loss or absorption

from waves moving through a medium. We shall meet this in all the waves we discuss.
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Random processes, for example collisions between particles, in Brownian motion, are of

great significance in physics. Diffusion, viscosity or frictional resistance and thermal

conductivity are all the result of random collision processes. These energy dissipating

phenomena represent the transport of mass, momentum and energy, and change only in the

direction of increasing disorder. They are known as ‘thermodynamically irreversible’

processes and are associated with the increase of entropy. Heat, for example, can flow only

from a body at a higher temperature to one at a lower temperature. Using the earlier

analysis where the length a is no longer a simple harmonic amplitude but is now the

average distance a particle travels between random collisions (its mean free path), we see

that after n such collisions (with, on average, equal time intervals between collisions) the

particle will, on average, have travelled only a distance
ffiffiffi
n

p
a from its position at time t ¼ 0,

so that the distance travelled varies only with the square root of the time elapsed instead of

being directly proportional to it. This is a feature of all random processes.

Not all the particles of the system will have travelled a distance
ffiffiffi
n

p
a but this distance is

the most probable and represents a statistical average.

Random behaviour is described by the diffusion equation (see the last section of

Chapter 7) and a constant coefficient called the diffusivity of the process will always

arise. The dimensions of a diffusivity are always length2/time and must be interpreted in

terms of a characteristic distance of the process which varies only with the square root of

time.

Some Useful Mathematics

The Exponential Series

By a ‘natural process’ of growth or decay we mean a process in which a quantity changes

by a constant fraction of itself in a given interval of space or time. A 5% per annum

compound interest represents a natural growth law; attenuation processes in physics usually

describe natural decay.

The law is expressed differentially as

dN

N
¼ �� dx or

dN

N
¼ �� dt

where N is the changing quantity, � is a constant and the positive and negative signs

represent growth and decay respectively. The derivatives dN/dx or dN/dt are therefore

proportional to the value of N at which the derivative is measured.

Integration yields N ¼ N0e
��x or N ¼ N0e

��t where N0 is the value at x or t ¼ 0 and e

is the exponential or the base of natural logarithms. The exponential series is defined as

e x ¼ 1þ xþ x2

2!
þ x3

3!
þ � � � þ xn

n!
þ � � �

and is shown graphically for positive and negative x in Figure 1.14. It is important to note

that whatever the form of the index of the logarithmic base e, it is the power to which the
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base is raised, and is therefore always non-dimensional. Thus e�x is non-dimensional and �
must have the dimensions of x�1. Writing

e�x ¼ 1þ �xþ ð�xÞ2
2!

þ ð�xÞ3
3!

þ � � �

it follows immediately that

d

dx
ðe�xÞ ¼ �þ 2�2

2!
xþ 3�3

3!
x2 þ � � �

¼ � 1þ �xþ ð�xÞ2
2!

þ ð�xÞ3
3!

!
þ � � �

" #

¼ �e�x

Similarly

d2

dx2
ðe� xÞ ¼ �2 e� x

In Chapter 2 we shall use d(e�t)=dt ¼ � e�t and d2 (e�t)=dt 2 ¼ �2 e�t on a number of

occasions.

By taking logarithms it is easily shown that e x e y ¼ e xþy since loge ðe x e yÞ ¼
loge e

x þ loge e
y ¼ xþ y.

The Notation i ¼ ffiffiffiffiffiffiffi�1
p

The combination of the exponential series with the complex number notation i ¼ ffiffiffiffiffiffiffi�1
p

is

particularly convenient in physics. Here we shall show the mathematical convenience in

expressing sine or cosine (oscillatory) behaviour in the form eix ¼ cos xþ i sin x.

0
x

y

1

y = exy = e−x

Figure 1.14 The behaviour of the exponential series y ¼ e x and y ¼ e�x
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In Chapter 3 we shall see the additional merit of i in its role of vector operator.

The series representation of sin x is written

sin x ¼ x� x3

3!
þ x5

5!
� x7

7!
� � �

and that of cos x is

cos x ¼ 1� x2

2!
þ x4

4!
� x6

6!
� � �

Since

i ¼
ffiffiffiffiffiffiffi
�1

p
; i2 ¼ �1; i3 ¼ �i

etc. we have

eix ¼ 1þ ixþ ðixÞ2
2!

þ ðixÞ3
3!

þ ðixÞ4
4!

þ � � �

¼ 1þ ix� x2

2!
� ix3

3!
þ x4

4!
þ � � �

¼ 1� x2

2!
þ x4

4!
þ i x� x3

3!
þ x5

5!
þ � � �

� �
¼ cos xþ i sin x

We also see that

d

dx
ðeixÞ ¼ i e ix ¼ i cos x� sin x

Often we shall represent a sine or cosine oscillation by the form eix and recover the original

form by taking that part of the solution preceded by i in the case of the sine, and the real

part of the solution in the case of the cosine.

Examples

(1) In simple harmonic motion (€xxþ !2x ¼ 0) let us try the solution x ¼ a ei!t e i�, where a

is a constant length, and � (and therefore e i�) is a constant.

dx

dt
¼ _xx ¼ i!a ei!t ei� ¼ i!x

d2x

dt 2
¼ €xx ¼ i2!2a ei!t ei� ¼ �!2x

Therefore

x ¼ a ei!t ei� ¼ a eið!tþ�Þ

¼ a cos ð!t þ �Þ þ i a sin ð!t þ �Þ

is a complete solution of €xxþ !2x ¼ 0.
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On p. 6 we used the sine form of the solution; the cosine form is equally valid and merely

involves an advance of �=2 in the phase �.
(2)

e ix þ e�ix ¼ 2 1� x2

2!
þ x4

4!
� � � �

� �
¼ 2 cos x

eix � e�ix ¼ 2i x� x3

3!
þ x5

5!
� � � �

� �
¼ 2i sin x

(3) On p. 21 we used a geometrical method to show that the resultant of the superposed

harmonic vibrations

a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ þ � � � þ a cos ð!t þ ½n� 1��Þ

¼ a
sin n�=2

sin �=2
cos !t þ n� 1

2

� �
�

� �

We can derive the same result using the complex exponential notation and taking the real

part of the series expressed as the geometrical progression

a ei!t þ a eið!tþ�Þ þ a eið!tþ2�Þ þ � � � þ a ei½!tþðn�1Þ��

¼ a ei!tð1þ zþ z2 þ � � � þ z ðn�1ÞÞ
where z ¼ e i�.

Writing

SðzÞ ¼ 1þ zþ z2 þ � � � þ zn�1

and

z½SðzÞ� ¼ zþ z2 þ � � � þ zn

we have

SðzÞ ¼ 1� zn

1� z
¼ 1� ein�

1� ei�

So

a ei!tSðzÞ ¼ a ei!t
1� ein�

1� ei�

¼ a ei!t
ein�=2ðe�in�=2 � e in�=2Þ
ei�=2ðe�i�=2 � ei�=2Þ

¼ a ei½!tþ
n�1
2ð Þ�� sin n�=2

sin �=2
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with the real part

¼ a cos !t þ n� 1

2

� �
�

� �
sin n�=2

sin �=2

which recovers the original cosine term from the complex exponential notation.

(Problem 1.18)

(4) Suppose we represent a harmonic oscillation by the complex exponential form

z ¼ a ei!t

where a is the amplitude. Replacing i by � i defines the complex conjugate

z� ¼ a e�i!t

The use of this conjugate is discussed more fully in Chapter 3 but here we can note that the

product of a complex quantity and its conjugate is always equal to the square of the

amplitude for

zz� ¼ a2 e i!t e�i!t ¼ a2 e ði�iÞ!t ¼ a2 e0

¼ a2

(Problem 1.19)

Problem 1.1
The equation of motion

m€xx ¼ �sx with !2 ¼ s

m

applies directly to the system in Figure 1.1(c).

If the pendulum bob of Figure 1.1(a) is displaced a small distance x show that the stiffness (restoring

force per unit distance) is mg=l and that !2 ¼ g=l where g is the acceleration due to gravity. Now use

the small angular displacement � instead of x and show that ! is the same.

In Figure 1.1(b) the angular oscillations are rotational so the mass is replaced by the moment of

inertia I of the disc and the stiffness by the restoring couple of the wire which is C rad�1 of angular

displacement. Show that !2 ¼ C=I.

In Figure 1.1(d) show that the stiffness is 2T=l and that !2 ¼ 2T=lm.

In Figure 1.1(e) show that the stiffness of the system in 2�Ag, where A is the area of cross section

and that !2 ¼ 2g=l where g is the acceleration due to gravity.
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In Figure 1.1(f) only the gas in the flask neck oscillates, behaving as a piston of mass �Al. If the
pressure changes are calculated from the equation of state use the adiabatic relation pV � ¼ constant

and take logarithms to show that the pressure change in the flask is

dp ¼ ��p
dV

V
¼ ��p

Ax

V
;

where x is the gas displacement in the neck. Hence show that !2 ¼ �pA=l�V . Note that �p is the

stiffness of a gas (see Chapter 6).

In Figure 1.1(g), if the cross-sectional area of the neck is A and the hydrometer is a distance x above

its normal floating level, the restoring force depends on the volume of liquid displaced (Archimedes’

principle). Show that !2 ¼ g�A=m.

Check the dimensions of !2 for each case.

Problem 1.2
Show by the choice of appropriate values for A and B in equation (1.2) that equally valid solutions

for x are

x ¼ a cos ð!t þ �Þ
x ¼ a sin ð!t � �Þ
x ¼ a cos ð!t � �Þ

and check that these solutions satisfy the equation

€xxþ ! 2x ¼ 0

Problem 1.3
The pendulum in Figure 1.1(a) swings with a displacement amplitude a. If its starting point from rest

is

ðaÞ x ¼ a

ðbÞ x ¼ �a

find the different values of the phase constant � for the solutions

x ¼ a sin ð!t þ �Þ
x ¼ a cos ð!t þ �Þ
x ¼ a sin ð!t � �Þ
x ¼ a cos ð!t � �Þ

For each of the different values of �, find the values of !t at which the pendulum swings through the

positions

x ¼ þa=
ffiffiffi
2

p

x ¼ a=2
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and

x ¼ 0

for the first time after release from

x ¼ �a

Problem 1.4
When the electron in a hydrogen atom bound to the nucleus moves a small distance from its

equilibrium position, a restoring force per unit distance is given by

s ¼ e2=4�	0r
2

where r ¼ 0:05 nm may be taken as the radius of the atom. Show that the electron can oscillate with

a simple harmonic motion with

!0 � 4:5	 10�16 rad s�1

If the electron is forced to vibrate at this frequency, in which region of the electromagnetic spectrum

would its radiation be found?

e ¼ 1:6	 10�19 C; electron mass m e ¼ 9:1	 10�31 kg

	 0 ¼ 8:85	 10�12 N�1 m�2 C2

Problem 1.5
Show that the values of !2 for the three simple harmonic oscillations (a), (b), (c) in the diagram are

in the ratio 1 : 2 : 4.

m

m m

ssss

s

(a) (b) (c)

Problem 1.6
The displacement of a simple harmonic oscillator is given by

x ¼ a sin ð!t þ �Þ

If the oscillation started at time t ¼ 0 from a position x0 with a velocity _xx ¼ v0 show that

tan� ¼ !x0=v 0

and

a ¼ ðx20 þ v 2
0=!

2Þ 1=2
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Problem 1.7
A particle oscillates with simple harmonic motion along the x axis with a displacement amplitude a

and spends a time dt in moving from x to xþ dx. Show that the probability of finding it between x

and xþ dx is given by

dx

�ða2 � x2Þ 1=2

(in wave mechanics such a probability is not zero for x > a).

Problem. 1.8
Many identical simple harmonic oscillators are equally spaced along the x axis of a medium and a

photograph shows that the locus of their displacements in the y direction is a sine curve. If the

distance 
 separates oscillators which differ in phase by 2� radians, what is the phase difference

between two oscillators a distance x apart?

Problem 1.9
A mass stands on a platform which vibrates simple harmonically in a vertical direction at a

frequency of 5 Hz. Show that the mass loses contact with the platform when the displacement

exceeds 10�2m.

Problem 1.10
A massM is suspended at the end of a spring of length l and stiffness s. If the mass of the spring is m

and the velocity of an element dy of its length is proportional to its distance y from the fixed end of

the spring, show that the kinetic energy of this element is

1

2

m

l
dy

� 	 y

l
v

� 	 2

where v is the velocity of the suspended mass M. Hence, by integrating over the length of the spring,

show that its total kinetic energy is 1
6
mv2 and, from the total energy of the oscillating system, show

that the frequency of oscillation is given by

!2 ¼ s

M þ m=3

Problem 1.11
The general form for the energy of a simple harmonic oscillator is

E ¼ 1
2
mass (velocity) 2 þ 1

2
stiffness (displacement)2

Set up the energy equations for the oscillators in Figure 1.1(a), (b), (c), (d), (e), (f) and (g), and use

the expression

dE

dt
¼ 0

to derive the equation of motion in each case.
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Problem 1.12
The displacement of a simple harmonic oscillator is given by x ¼ a sin !t. If the values of the

displacement x and the velocity _xx are plotted on perpendicular axes, eliminate t to show that the locus

of the points (x; _xx) is an ellipse. Show that this ellipse represents a path of constant energy.

Problem 1.13
In Chapter 12 the intensity of the pattern when light from two slits interferes (Young’s experiment)

will be seen to depend on the superposition of two simple harmonic oscillations of equal amplitude a

and phase difference �. Show that the intensity

I ¼ R2 / 4a 2 cos2 �=2

Between what values does the intensity vary?

Problem 1.14
Carry out the process indicated in the text to derive equation (1.3) on p. 15.

Problem 1.15
The co-ordinates of the displacement of a particle of mass m are given by

x ¼ a sin!t

y ¼ b cos!t

Eliminate t to show that the particle follows an elliptical path and show by adding its kinetic and

potential energy at any position x, y that the ellipse is a path of constant energy equal to the sum of

the separate energies of the simple harmonic vibrations.

Prove that the quantity mðx _yy� y _xxÞ is also constant. What does this quantity represent?

Problem 1.16
Two simple harmonic motions of the same frequency vibrate in directions perpendicular to each

other along the x and y axes. A phase difference

� ¼ �2 � � 1

exists between them such that the principal axes of the resulting elliptical trace are inclined at an

angle to the x and y axes. Show that the measurement of two separate values of x (or y) is sufficient to

determine the phase difference.

(Hint: use equation (1.3) and measure y(max), and y for (x ¼ 0.)

Problem 1.17
Take a random group of n > 7 values of � in the range 0
�
� and form the product

Xn
i¼1
i6¼j

cos� i

Xn
j¼1

cos� j

Show that the average value obtained for several such groups is negligible with respect to n=2.
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Problem 1.18
Use the method of example (3) (p. 28) to show that

a sin!t þ a sin ð!t þ �Þ þ a sin ð!t þ 2�Þ þ � � � þ a sin ½!t þ ðn� 1Þ��

¼ a sin !t þ ðn� 1Þ
2

�

� �
sin n�=2

sin �=2

Problem 1.19
If we represent the sum of the series

a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ þ � � � þ a cos ½!t þ ðn� 1Þ��
by the complex exponential form

z ¼ a e i!tð1þ e i� þ e i2� þ � � � þ e iðn�1Þ�Þ
show that

zz� ¼ a 2 sin
2 n�=2

sin2 �=2

Summary of Important Results

Simple Harmonic Oscillator (mass m, stiffness s, amplitude a)

Equation of motion €xxþ !2x ¼ 0 where !2 ¼ s=m
Displacement x ¼ a sin ð!t þ �Þ
Energy ¼ 1

2
m _xx2 þ 1

2
sx2 ¼ 1

2
m!2 a2 ¼ 1

2
sa2 ¼ constant

Superposition (Amplitude and Phase) of two SHMs
One-dimensional

Equal !, different amplitudes, phase difference �, resultant R where R2 ¼ a2
1 þ a2

2þ
2a1a2 cos �
Different !, equal amplitude,

x ¼ x1 þ x2 ¼ aðsin!1t þ sin!2tÞ

¼ 2a sin
ð!1 þ !2Þt

2
cos

ð!2 � !1Þt
2

Two-dimensional: perpendicular axes
Equal !, different amplitude—giving general conic section

x2

a2
1

þ y2

a2
2

� 2xy

a1a2

cos ð�2 � �1Þ ¼ sin2ð�2 � �1Þ

(basis of optical polarization)
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Superposition of n SHM Vectors (equal amplitude a , constant successive phase difference �)

The resultant is R cos ð!t þ �Þ, where

R ¼ a
sin n�=2

sin �=2

and

� ¼ ðn� 1Þ�=2

Important in optical diffraction and wave groups of many components.
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2

Damped Simple Harmonic Motion

Initially we discussed the case of ideal simple harmonic motion where the total energy

remained constant and the displacement followed a sine curve, apparently for an infinite

time. In practice some energy is always dissipated by a resistive or viscous process; for

example, the amplitude of a freely swinging pendulum will always decay with time as

energy is lost. The presence of resistance to motion means that another force is active,

which is taken as being proportional to the velocity. The frictional force acts in the

direction opposite to that of the velocity (see Figure 2.1) and so Newton’s Second law

becomes

m€xx ¼ � sx� r _xx

where r is the constant of proportionality and has the dimensions of force per unit of

velocity. The presence of such a term will always result in energy loss.

The problem now is to find the behaviour of the displacement x from the equation

m€xxþ r _xxþ sx ¼ 0 ð2:1Þ
where the coefficients m, r and s are constant.

When these coefficients are constant a solution of the form x ¼ C e�t can always be

found. Obviously, since an exponential term is always nondimensional, C has the

dimensions of x (a length, say) and � has the dimensions of inverse time, T �1. We shall

see that there are three possible forms of this solution, each describing a different

behaviour of the displacement x with time. In two of these solutions C appears explicitly as

a constant length, but in the third case it takes the form

C ¼ Aþ Bt�

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
# 2005 John Wiley & Sons, Ltd

� The number of constants allowed in the general solution of a differential equation is always equal
to the order (that is, the highest differential coefficient) of the equation. The two values A and B are
allowed because equation (2.1) is second order. The values of the constants are adjusted to satisfy the
initial conditions.
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where A is a length, B is a velocity and t is time, giving C the overall dimensions of a

length, as we expect. From our point of view this case is not the most important.

Taking C as a constant length gives _xx ¼ �C e�t and €xx ¼ �2C e�t, so that equation (2.1)

may be rewritten

C e�tðm�2 þ r�þ sÞ ¼ 0

so that either

x ¼ C e�t ¼ 0 (which is trivial)

or

m�2 þ r�þ s ¼ 0

Solving the quadratic equation in � gives

� ¼ �r

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2

4m2
� s

m

r

Note that r=2m and ðs=mÞ1=2, and therefore, �, all have the dimensions of inverse time,

T �1, which we expect from the form of e�t.

The displacement can now be expressed as

x1 ¼ C1 e
�rt=2mþðr 2=4m 2�s=mÞ 1=2 t; x2 ¼ C2 e

�rt=2m�ðr 2=4m 2�s=mÞ 1=2 t

or the sum of both these terms

x ¼ x1 þ x2 ¼ C1 e
�rt=2mþðr 2=4m 2�s=mÞ 1=2 t þ C2 e

�rt=2m�ðr 2=4m 2�s=mÞ 1=2 t

The bracket ðr 2=4m2 � s=mÞ can be positive, zero or negative depending on the relative

magnitude of the two terms inside it. Each of these conditions gives one of the three

possible solutions referred to earlier and each solution describes a particular kind of

m

Frictional
force F = −rx

s

x

Figure 2.1 Simple harmonic motion system with a damping or frictional force r _xx acting against the
direction of motion. The equation of motion is m€xx þ r _xx þ sx ¼ 0
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behaviour. We shall discuss these solutions in order of increasing significance from our

point of view; the third solution is the one we shall concentrate upon throughout the rest of

this book.

The conditions are:

(1) Bracket positive ðr 2=4m2 > s=mÞ. Here the damping resistance term r 2=4m2

dominates the stiffness term s=m, and heavy damping results in a dead beat system.

(2) Bracket zero ðr 2=4m2 ¼ s=mÞ. The balance between the two terms results in a

critically damped system.

Neither (1) nor (2) gives oscillatory behaviour.

(3) Bracket negative ðr 2=4m2 < s=mÞ. The system is lightly damped and gives oscillatory

damped simple harmonic motion.

Case 1. Heavy Damping

Writing r=2m ¼ p and ðr 2=4m2 � s=mÞ1=2 ¼ q, we can replace

x ¼ C1 e
�rt=2mþðr 2=4m 2�s=mÞ 1=2 t þ C2 e

�rt=2m�ðr 2=4m 2�s=mÞ 1=2 t

by

x ¼ e�ptðC1 e
qt þ C2 e

�qt Þ;

where the C1 and C2 are arbitrary in value but have the same dimensions as C (note that

two separate values of C are allowed because the differential equation (2.1) is second

order).

If now F ¼ C1 þ C2 and G ¼ C1 � C2, the displacement is given by

x ¼ e�pt F

2
ðeqt þ e�qtÞ þ G

2
ðeqt � e�qtÞ

� �

or

x ¼ e�ptðF cosh qt þ G sinh qtÞ

This represents non-oscillatory behaviour, but the actual displacement will depend upon

the initial (or boundary) conditions; that is, the value of x at time t ¼ 0. If x ¼ 0 at t ¼ 0

then F ¼ 0, and

x ¼ G e�rt=2m sinh
r 2

4m2
� s

m

� �1=2

t

Figure 2.2 illustrates such behaviour when a heavily damped system is disturbed from

equilibrium by a sudden impulse (that is, given a velocity at t ¼ 0). It will return to zero
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displacement quite slowly without oscillating about its equilibrium position. More

advanced mathematics shows that the value of the velocity dx=dt vanishes only once so that
there is only one value of maximum displacement.

(Problem 2.1)

Case 2. Critical Damping ðr 2=4m2 ¼ s=mÞ
Using the notation of Case 1, we see that q ¼ 0 and that x ¼ e�ptðC1 þ C2Þ. This is, in
fact, the limiting case of the behaviour of Case I as q changes from positive to negative. In

this case the quadratic equation in � has equal roots, which, in a differential equation

solution, demands that C must be written C ¼ Aþ Bt, where A is a constant length and B a

given velocity which depends on the boundary conditions. It is easily verified that the value

x ¼ ðAþ BtÞe�rt=2m ¼ ðAþ BtÞe�pt

satisfies m€xxþ r _xxþ sx ¼ 0 when r 2=4m2 ¼ s=m.

(Problem 2.2)

Application to a Damped Mechanical Oscillator

Critical damping is of practical importance in mechanical oscillators which experience

sudden impulses and are required to return to zero displacement in the minimum time.

Suppose such a system has zero displacement at t ¼ 0 and receives an impulse which gives

it an initial velocity V.

Time

r  increasing

D
is

pl
ac

em
en

t

Heavy damping r 2

4m 2

s
m 

>

Figure 2.2 Non-oscillatory behaviour of damped simple harmonic system with heavy damping
(where r 2=4m2 > s=m) after the system has been given an impulse from a rest position x ¼ 0
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Then x ¼ 0 (so that A ¼ 0) and _xx ¼ V at t ¼ 0. However,

_xx ¼ B½ð�ptÞe�pt þ e�pt� ¼ B at t ¼ 0

so that B ¼ V and the complete solution is

x ¼ Vt e�pt

The maximum displacement x occurs when the system comes to rest before returning to

zero displacement. At maximum displacement

_xx ¼ V e�ptð1� ptÞ ¼ 0

thus giving ð1� ptÞ ¼ 0, i.e. t ¼ 1=p.
At this time the displacement is therefore

x ¼ Vt e�pt ¼ V

p
e�1

¼ 0:368
V

p
¼ 0:368

2mV

r

The curve of displacement versus time is shown in Figure 2.3; the return to zero in a

critically damped system is reached in minimum time.

Case 3. Damped Simple Harmonic Motion

When r 2=4m2 < s=m the damping is light, and this gives from the present point of view the

most important kind of behaviour, oscillatory damped simple harmonic motion.

r 2

4m 2

s
m 

2m
r

t =

m
r

=

Displacement

Time0

Critical
damping2 Ve−1x =

Figure 2.3 Limiting case of non-oscillatory behaviour of damped simple harmonic system where
r 2=4m2 ¼ s=m (critical damping)

Damped Simple Harmonic Motion 41



The expression ðr 2=4m2 � s=mÞ1=2 is an imaginary quantity, the square root of a

negative number, which can be rewritten

� r 2

4m2
� s

m

� �1=2

¼ �
ffiffiffiffiffiffiffi
�1

p s

m
� r 2

4m2

� �1=2

¼ �i
s

m
� r 2

4m2

� �1=2

ðwhere i ¼
ffiffiffiffiffiffiffi
�1

p
Þ

so the displacement

x ¼ C1 e
�rt=2m eþiðs=m�r 2=4m 2Þ 1=2 t þ C2 e

�rt=2m e�iðs=m�r 2=4m 2Þ 1=2 t

The bracket has the dimensions of inverse time; that is, of frequency, and can be written

ðs=m� r 2=4m2Þ1=2 ¼ ! 0, so that the second exponential becomes ei!
0t ¼ cos! 0tþ

i sin! 0t: This shows that the behaviour of the displacement x is oscillatory with a new

frequency ! 0 < ! ¼ ðs=mÞ1=2, the frequency of ideal simple harmonic motion. To compare

the behaviour of the damped oscillator with the ideal case we should like to express the

solution in a form similar to x ¼ A sinð! 0t þ �Þ as in the ideal case, where ! has been

replaced by ! 0.
We can do this by writing

x ¼ e�rt=2mðC1 e
i! 0t þ C2 e

�i! 0tÞ

If we now choose

C1 ¼ A

2i
e i�

and

C2 ¼ � A

2i
e�i�

where A and � (and thus ei�) are constants which depend on the motion at t ¼ 0, we find

after substitution

x ¼ A e�rt=2m ½eið! 0tþ�Þ � e�ið! 0tþ�Þ�
2i

¼ A e�rt=2msinð! 0t þ �Þ
This procedure is equivalent to imposing the boundary condition x ¼ A sin� at t ¼ 0

upon the solution for x. The displacement therefore varies sinusoidally with time as in the

case of simple harmonic motion, but now has a new frequency

! 0 ¼ s

m
� r 2

4m2

� �1=2
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and its amplitude A is modified by the exponential term e�rt=2m, a term which decays with

time.

If x ¼ 0 at t ¼ 0 then � ¼ 0; Figure 2.4 shows the behaviour of x with time, its

oscillations gradually decaying with the envelope of maximum amplitudes following the

dotted curve e�rt=2m. The constant A is obviously the value to which the amplitude would

have risen at the first maximum if no damping were present.

The presence of the force term r _xx in the equation of motion therefore introduces a loss of

energy which causes the amplitude of oscillation to decay with time as e�rt=2m.

(Problem 2.3)

Methods of Describing the Damping of an Oscillator

Earlier in this chapter we saw that the energy of an oscillator is given by

E ¼ 1
2
ma2!2 ¼ 1

2
sa2

that is, proportional to the square of its amplitude.

We have just seen that in the presence of a damping force r _xx the amplitude decays with

time as

e�rt=2m

so that the energy decay will be proportional to

ðe�rt=2mÞ2

that is, e�rt=m. The larger the value of the damping force r the more rapid the decay of the

amplitude and energy. Thus we can use the exponential factor to express the rates at which

the amplitude and energy are reduced.

τ′ τ′2
t

r t
2m

r  
2

4m 
2

s
m 

e

<

D
is

pl
ac

em
en

t

−

Figure 2.4 Damped oscillatory motion where s=m > r 2=4m 2. The amplitude decays with e�rt=2m,
and the reduced angular frequency is given by ! 02 ¼ s=m� r 2=4m2
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Logarithmic Decrement

This measures the rate at which the amplitude dies away. Suppose in the expression

x ¼ A e�rt=2m sinð! 0t þ �Þ

we choose

� ¼ �=2

and we write

x ¼ A0 e
�rt=2m cos! 0t

with x ¼ A0 at t ¼ 0. Its behaviour will follow the curve in Figure 2.5.

If the period of oscillation is � 0 where ! 0 ¼ 2�=� 0, then one period later the amplitude is

given by

A1 ¼ A0 e
ð�r=2mÞ� 0

so that

A0

A1

¼ e r�
0=2m ¼ e �

A0

At

A2

t0

τ ′ τ ′

τ ′

τ ′

e
r

2m t

e
r

2m

(2    )
e

r
2m

−

−

−

Figure 2.5 The logarithmic ratio of any two amplitudes one period apart is the logarithmic
decrement, defined as � ¼ logeðAn=Anþ1Þ ¼ r� 0=2m
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where

� ¼ r

2m
� 0 ¼ loge

A0

A1

is called the logarithmic decrement. (Note that this use of � differs from that in Figure 1.11).

The logarithmic decrement � is the logarithm of the ratio of two amplitudes of oscillation

which are separated by one period, the larger amplitude being the numerator since e � > 1.

Similarly

A0

A2

¼ e rð2�
0Þ=2m ¼ e2�

and

A0

An

¼ en�

Experimentally, the value of � is best found by comparing amplitudes of oscillations

which are separated by n periods. The graph of

loge

A0

An

versus n for different values of n has a slope �.

Relaxation Time or Modulus of Decay

Another way of expressing the damping effect is by means of the time taken for the

amplitude to decay to

e�1 ¼ 0:368

of its original value A0. This time is called the relaxation time or modulus of decay and the

amplitude

At ¼ A0 e
�rt=2m ¼ A0 e

�1

at a time t ¼ 2m=r.
Measuring the natural decay in terms of the fraction e�1 of the original value is a very

common procedure in physics. The time for a natural decay process to reach zero is, of

course, theoretically infinite.

(Problem 2.4)

The Quality Factor or Q-value of a Damped Simple Harmonic Oscillator

This measures the rate at which the energy decays. Since the decay of the amplitude is

represented by

A ¼ A0 e
�rt=2m
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the decay of energy is proportional to

A2 ¼ A2
0 e

ð�rt=2mÞ 2

and may be written

E ¼ E0 e
ð�r=mÞt

where E0 is the energy value at t ¼ 0.

The time for the energy E to decay to E0 e
�1 is given by t ¼ m=r s during which time the

oscillator will have vibrated through ! 0m=r rad.
We define the quality factor

Q ¼ ! 0m
r

as the number of radians through which the damped system oscillates as its energy

decays to

E ¼ E0 e
�1

If r is small, then Q is very large and

s

m
� r 2

4m2

so that

! 0 � !0 ¼ s

m

� �1=2

Thus, we write, to a very close approximation,

Q ¼ !0m

r

which is a constant of the damped system.

Since r=m now equals !0=Q we can write

E ¼ E0 e
ð�r=mÞt ¼ E0 e

�! 0t=Q

The fact that Q is a constant ð¼ !0m=rÞ implies that the ratio

energy stored in system

energy lost per cycle
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is also a constant, for

Q

2�
¼ !0m

2�r
¼ �0m

r

is the number of cycles (or complete oscillations) through which the system moves in

decaying to

E ¼ E0 e
�1

and if

E ¼ E0 e
ð�r=mÞt

the energy lost per cycle is

��E ¼ dE

dt
�t ¼ �r

m
E
1

� 0

where �t ¼ 1=� 0 ¼ � 0, the period of oscillation.

Thus, the ratio

energy stored in system

energy lost per cycle
¼ E

��E
¼ � 0m

r
� �0m

r

¼ Q

2�

In the next chapter we shall meet the same quality factor Q in two other roles, the first as

a measure of the power absorption bandwidth of a damped oscillator driven near its

resonant frequency and again as the factor by which the displacement of the oscillator

is amplified at resonance.

Example on the Q-value of a Damped Simple Harmonic Oscillator

An electron in an atom which is freely radiating power behaves as a damped simple

harmonic oscillator.

If the radiated power is given by P ¼ q2!4x20=12�"0c
3 W at a wavelength of 0.6mm

(6000 Å), show that the Q-value of the atom is about 108 and that its free radiation lifetime

is about 10�8s (the time for its energy to decay to e�1 of its original value).

q ¼ 1:6� 10�19C

1=4�"0 ¼ 9� 109 mF�1

me ¼ 9� 10�31 kg

c ¼ 3� 108 m s�1

x0 ¼ maximum amplitude of oscillation

The radiated power P is ���E, where ��E is the energy loss per cycle, and the energy of

the oscillator is given by E ¼ 1
2
me!

2x20.
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Thus, Q ¼ 2�E=��E ¼ ��me!
2x20=P, and inserting the values above with ! ¼ 2�� ¼

2�c=�, where the wavelength � is given, yields a Q value of � 5� 107.

The relation Q ¼ !t gives t, the radiation lifetime, a value of � 10�8 s.

Energy Dissipation

We have seen that the presence of the resistive force reduces the amplitude of oscillation

with time as energy is dissipated.

The total energy remains the sum of the kinetic and potential energies

E ¼ 1
2
m _xx2 þ 1

2
sx2

Now, however, dE=dt is not zero but negative because energy is lost, so that

dE

dt
¼ d

dt
ð1
2
m _xx2 þ 1

2
sx2Þ ¼ _xxðm€xxþ sxÞ

¼ _xxð�r _xxÞ for m _xxþ r _xxþ sx ¼ 0

i.e. dE=dt ¼ �r _xx2, which is the rate of doing work against the frictional force (dimensions

of force � velocity ¼ force � distance/time).

(Problems 2.5, 2.6)

Damped SHM in an Electrical Circuit

The force equation in the mechanical oscillator is replaced by the voltage equation in the

electrical circuit of inductance, resistance and capacitance (Figure 2.6).

IR

IR

+
+

+

+ +

−
−

dI
dt

L

dI
dt

L

q
C

q
C

= 0

−

Figure 2.6 Electrical circuit of inductance, capacitance and resistance capable of damped simple
harmonic oscillations. The sum of the voltages around the circuit is given from Kirchhoff ’s law

as L
dI

dt
þ RI þ q

C
¼ 0
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We have, therefore,

L
dI

dt
þ RI þ q

C
¼ 0

or

L€qqþ R _qqþ q

C
¼ 0

and by comparison with the solutions for x in the mechanical case we know immediately

that the charge

q ¼ q0 e
�Rt=2L�ðR 2=4L 2�1=LCÞ 1=2 t

which, for 1=LC > R2=4L2, gives oscillatory behaviour at a frequency

!2 ¼ 1

LC
� R2

4L2

From the exponential decay term we see that R=L has the dimensions of inverse time T �1

or !, so that !L has the dimensions of R; that is, !L is measured in ohms.

Similarly, since !2 ¼ 1=LC; !L ¼ 1=!C, so that 1=!C is also measured in ohms. We

shall use these results in the next chapter.

(Problems 2.7, 2.8, 2.9)

Problem 2.1
The heavily damped simple harmonic system of Figure 2.2 is displaced a distance F from its

equilibrium position and released from rest. Show that in the expression for the displacement

x ¼ e�ptðF cosh qt þ G sinh qtÞ

where

p ¼ r

2m
and q ¼ r 2

4m 2
� s

m

� �1=2

that the ratio

G

F
¼ r

ðr 2 � 4msÞ 1=2

Problem 2.2
Verify that the solution

x ¼ ðAþ BtÞe�rt=2m
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satisfies the equation

m€xxþ r _xxþ sx ¼ 0

when

r 2=4m2 ¼ s=m

Problem 2.3
The solution for damped simple harmonic motion is given by

x ¼ e�rt=2mðC 1 e
i! 0t þ C 2 e

�i! 0tÞ

If x ¼ A cos� at t ¼ 0, find the values of C 1 and C 2 to show that _xx � �! 0A sin� at t ¼ 0 only if r=m
is very small or � � �=2.

Problem 2.4
A capacitance C with a charge q0 at t ¼ 0 discharges through a resistance R. Use the voltage

equation q=C þ IR ¼ 0 to show that the relaxation time of this process is RC s; that is,

q ¼ q0 e
�t=RC

(Note that t=RC is non-dimensional.)

Problem 2.5
The frequency of a damped simple harmonic oscillator is given by

! 02 ¼ s

m
� r 2

4m2
¼ !2

0 �
r 2

4m 2

(a) If !2
0 � ! 02 ¼ 10�6!2

0 show that Q ¼ 500 and that the logarithmic decrement � ¼ �=500.
(b) If !0 ¼ 106 and m ¼ 10�10 Kg show that the stiffness of the system is 100Nm�1, and that the

resistive constant r is 2� 10�7 N 	 sm�1.

(c) If the maximum displacement at t ¼ 0 is 10�2 m, show that the energy of the system is 5� 10�3

J and the decay to e�1 of this value takes 0.5 ms.

(d) Show that the energy loss in the first cycle is 2�� 10�5 J.

Problem 2.6
Show that the fractional change in the resonant frequency !0ð!2

0 ¼ s=mÞ of a damped simple

harmonic mechanical oscillator is � ð8Q 2Þ�1
where Q is the quality factor.

Problem 2.7
Show that the quality factor of an electrical LCR series circuit is Q ¼ !0L=R where !2

0 ¼ 1=LC

Problem 2.8
A plasma consists of an ionized gas of ions and electrons of equal number densities ðn i ¼ ne ¼ nÞ
having charges of opposite sign �e, and masses mi and me, respectively, where mi > me. Relative
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displacement between the two species sets up a restoring

+
+
+
+
+
+
+
+
+

−
−
−
−
−
−
−
−
−

E

x

l

electric field which returns the electrons to equilibrium, the ions being considered stationary. In the

diagram, a plasma slab of thickness l has all its electrons displaced a distance x to give a restoring

electric field E ¼ nex=" 0, where " 0 is constant. Show that the restoring force per unit area on the

electrons is xn 2e2l=" 0 and that they oscillate simple harmonically with angular frequency !2
e ¼

ne 2=me" 0. This frequency is called the electron plasma frequency, and only those radio waves of

frequency ! > ! e will propagate in such an ionized medium. Hence the reflection of such waves

from the ionosphere.

Problem 2.9
A simple pendulum consists of a mass m at the end of a string of length l and performs small

oscillations. The length is very slowly shortened whilst the pendulum oscillates many times at a

constant amplitude l� where � is very small. Show that if the length is changed by ��l the work

done is �mg�l (owing to the elevation of the position of equilibrium) together with an increase in

the pendulum energy

�E ¼ mg
� 2

2
� ml _��2

 !
�l

where � 2 is the average value of � 2 during the shortening. If � ¼ �0 cos!t, show that the energy of

the pendulum at any instant may be written

E ¼ ml 2!2� 2
0

2
¼ mgl� 2

0

2

and hence show that

�E

E
¼ � 1

2

�l

l
¼ ��

�

that is, E=�, the ratio of the energy of the pendulum to its frequency of oscillation remains constant

during the slowly changing process. (This constant ratio under slowly varying conditions is

important in quantum theory where the constant is written as a multiple of Planck’s constant, h.)
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Summary of Important Results

Damped Simple Harmonic Motion

Equation of motion m€xxþ r _xxþ sx ¼ 0

Oscillations when

s

m
>

r 2

4m2

Displacement x ¼ A e�rt=2m cosð! 0t þ �Þ where

! 02 ¼ s

m
� r 2

4m2

Amplitude Decay

Logarithmic decrement �—the logarithm of the ratio of two successive amplitudes one

period � 0 apart

� ¼ loge

An

Anþ1

¼ r� 0

2m

Relaxation Time

Time for amplitude to decay to A ¼ A0 e
�rt=2m ¼ A0 e

�1; that is, t ¼ 2m=r

Energy Decay

Quality factor Q is the number of radians during which energy decreases to E ¼ E0 e
�1

Q ¼ !0m

r
¼ 2�

energy stored in system

energy lost per cycle

E ¼ E0 e
�rt=m ¼ E0 e

�1 when Q ¼ !0t

In damped SHM

dE

dt
¼ ðm€xxþ sxÞ _xx ¼ �r _xx2 (work rate of resistive force)

For equivalent expressions in electrical oscillators replace m by L, r by R and s by 1=C.
Force equations become voltage equations.
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3

The Forced Oscillator

The Operation of i upon a Vector

We have already seen that a harmonic oscillation can be conveniently represented by the

form ei!t. In addition to its mathematical convenience i can also be used as a vector

operator of physical significance. We say that when i precedes or operates on a vector the

direction of that vector is turned through a positive angle (anticlockwise) of �=2, i.e. i
acting as an operator advances the phase of a vector by 90�. The operator � i rotates the

vector clockwise by �=2 and retards its phase by 90�. The mathematics of i as an operator

differs in no way from its use as
ffiffiffiffiffiffiffi�1

p
and from now on it will play both roles.

The vector r ¼ aþ ib is shown in Figure 3.1, where the direction of b is perpendicular to

that of a because it is preceded by i. The magnitude or modulus or r is written

r ¼ jrj ¼ ða2 þ b2Þ1=2

and

r 2 ¼ ða2 þ b2Þ ¼ ðaþ ibÞða� ibÞ ¼ rr�;

where ða� ibÞ ¼ r� is defined as the complex conjugate of ðaþ ibÞ; that is, the sign of i is
changed.

The vector r� ¼ a� ib is also shown in Figure 3.1.

The vector r can be written as a product of its magnitude r (scalar quantity) and its phase

or direction in the form (Figure 3.1)

r ¼ r ei� ¼ rðcos�þ i sin�Þ
¼ aþ ib

showing that a ¼ r cos� and b ¼ r sin�.

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
# 2005 John Wiley & Sons, Ltd
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It follows that

cos� ¼ a

r
¼ a

ða2 þ b2Þ1=2

and

sin� ¼ b

r
¼ b

ða2 þ b2Þ1=2

giving tan� ¼ b=a.
Similarly

r� ¼ r e�i� ¼ rðcos�� i sin�Þ
cos� ¼ a

r
; sin� ¼ �b

r
and tan� ¼ �b

a
ðFigure 3:1Þ

The reader should confirm that the operator i rotates a vector by �=2 in the positive

direction (as stated in the first paragraph of p. 53) by taking � ¼ �=2 in the expression

r ¼ r ei� ¼ rðcos �=2þ i sin�=2Þ

Note that � ¼ ��=2 in r ¼ r e�i�=2 rotates the vector in the negative direction.

Vector form of Ohm’s Law

Ohm’s Law is first met as the scalar relation V ¼ IR, where V is the voltage across the

resistance R and I is the current through it. Its scalar form states that the voltage and current

are always in phase. Both will follow a sin ð!t þ �Þ or a cos ð!t þ �Þ curve, and the value

of � will be the same for both voltage and current.

However, the presence of either or both of the other two electrical components,

inductance L and capacitance C, will introduce a phase difference between voltage and

r

r*

a
a

ib

−ib

φ

φ

φ

φ
r = r e

i

φ
r* = r e

−i

r  cos

φir  cos

φ−ir  cos

Figure 3.1 Vector representation using i operator and exponential index. Star superscript indicates
complex conjugate where � i replaces i
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current, and Ohm’s Law takes the vector form

V ¼ IZe;

where Ze, called the impedance, replaces the resistance, and is the vector sum of the

effective resistances of R, L, and C in the circuit.

When an alternating voltage Va of frequency ! is applied across a resistance, inductance

and condenser in series as in Figure 3.2a, the balance of voltages is given by

Va ¼ IRþ L
dI

dt
þ q=C

and the current through the circuit is given by I ¼ I0 e
i!t. The voltage across the inductance

VL ¼ L
dI

dt
¼ L

d

dt
I0 e

i!t ¼ i!LI0 e
i!t ¼ i!LI

But !L, as we saw at the end of the last chapter, has the dimensions of ohms, being the

value of the effective resistance presented by an inductance L to a current of frequency !.
The product !LI with dimensions of ohms times current, i.e. volts, is preceded by i; this

tells us that the phase of the voltage across the inductance is 90� ahead of that of the current
through the circuit.

Similarly, the voltage across the condenser is

q

C
¼ 1

C

ð
I dt ¼ 1

C
I0

ð
ei!t dt ¼ 1

i!C
I0 e

i!t ¼ � iI

!C

(since 1=i ¼ �i).

Again 1=!C, measured in ohms, is the value of the effective resistance presented by the

condenser to the current of frequency !. Now, however, the voltage I=!C across the

condenser is preceded by �i and therefore lags the current by 90�. The voltage and current

across the resistance are in phase and Figure 3.2b shows that the vector form of Ohm’s

Law may be written V ¼ IZ e ¼ I½Rþ ið!L� 1=!CÞ�, where the impedance Ze ¼
Rþ ið!L� 1=!CÞ. The quantities !L and 1=!C are called reactances because they

+++ −−− IR

I = I0eiωt

q
C

dI
dtL

Va

Figure 3.2a An electrical forced oscillator. The voltage Va is applied to the series LCR circuit giving
Va ¼ Ld I=dt þ IRþ q=C
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introduce a phase relationship as well as an effective resistance, and the bracket

ð!L� 1=!CÞ is often written Xe, the reactive component of Z e.

The magnitude, in ohms, i.e. the value of the impedance, is

Ze ¼ R2 þ !L� 1

!C

� �2
" #1=2

and the vector Ze may be represented by its magnitude and phase as

Ze ¼ Ze e
i� ¼ Zeðcos�þ i sin�Þ

so that

cos� ¼ R

Ze

; sin� ¼ Xe

Ze

and

tan� ¼ Xe=R;

where � is the phase difference between the total voltage across the circuit and the current

through it.

The value of � can be positive or negative depending on the relative value of !L and

1=!C: when !L > 1=!C; � is positive, but the frequency dependence of the components

show that � can change both sign and size.

The magnitude of Z e is also frequency dependent and has its minimum value Ze ¼ R

when !L ¼ 1=!C.
In the vector form of Ohm’s Law, V ¼ IZe. If V ¼ V0 e

i!t and Ze ¼ Ze e
i�, then we have

I ¼ V0 e
i!t

Ze ei�
¼ V0

Ze

eið!t��Þ

giving a current of amplitude V0=Ze which lags the voltage by a phase angle �.

The Impedance of a Mechanical Circuit

Exactly similar arguments hold when we consider not an electrical oscillator but a

mechanical circuit having mass, stiffness and resistance.

R

iωL iXe =i   ωL −        

ωC−i
1

ωC
1 i  ωL −        ωC

1
φ
R

Ze

Figure 3.2b Vector addition of resistance and reactances to give the electrical impedance Ze ¼
Rþ ið!L� 1=!CÞ
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